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Approximate Matching

In most cases, we cannot find a perfect match for each treated unit

▶ Many variables are continuous
▶ We have many covariates
▶ . . . and finite samples

Approximate matching allows us to match similar units
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Approximate Matching: Questions to Ask Yourself
1: Which distance measure to use?
▶ These determine how we measure similarity

2: How to turn distance into matches
▶ Which matches are "good enough"?
▶ Unique or multiple matches?
▶ Cut-off points (calipers), number of

neighbours?
3: How do we prune the data?
▶ What do we do with units that are not

matched?
4: Match with or without replacement?
▶ Do we allow control units to be matched to

multiple treated units?
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Approximate Matching

There are two main methods for approximate matching:

1. Distance Matching → minimise distance in X
2. Propensity Score Matching → match on likelihood of being treated

A third type of matching is coarsened exact matching (CEM)

It is also possible to combine matching methods

▶ Example: match exactly on some characteristics and approximately on others
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Distance Matching: Questions to Ask

How do we measure distance, i.e. the similarity between treated and control units?

What is the cut-off point for a good match?

Do we consider multiple matches for each treated unit?

▶ If so, what criterion determines which unit is a match?
▶ And should each control unit get the same weight?
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Distance Matching: Nearest Neighbour
Starting point: treated units, with covariates age and age at which they left education

6 / 69



Distance Matching: Nearest Neighbour
Treated and control units are different w.r.t. education
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Distance Matching: Nearest Neighbour
For each treated unit, we find the "closest" control unit in terms of X (Euclidean Distance)
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Distance Matching: Nearest Neighbour
Drop control units that are not close enough to any treated unit
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Distance Matching: Nearest Neighbour
Drop control units that are not close enough to any treated unit
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Distance Matching: Nearest Neighbour
Our estimation sample:
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Distance Matching: Nearest Neighbour

With one covariate, the distance is the Euclidean Distance

||Xi − Xj || =
√

(Xi − Xj)′(Xi − Xj)

=

√√√√ k∑
n=1

(Xni − Xnj)2

For each treated unit, we find the control unit with the smallest distance ||Xi − Xj ||
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Multiple Covariates: Mahalanobis Distance

With multiple covariates 1, . . . , k, we take into account the variance-covariance
matrix Σ̂X of the covariates

||Xi − Xj || =
√

(Xi − Xj)′Σ̂−1
X (Xi − Xj)

As before, for each treated unit, we find the control unit with the smallest distance
||Xi − Xj ||

Purpose of weighting with Σ̂−1
X :

▶ Covariates become scale-invariant
▶ All distances are measured in terms of standard deviations
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Nearest Neighbour Matching: Steps Involved

1. Preprocess (Matching)

▶ Calculate the Mahalanobis Distance ||Xi − Xj || =
√

(Xi − Xj)′Σ̂−1
X (Xi − Xj)

▶ Match each treated unit to the nearest control unit
▶ Prune control units if unused
▶ Prune matches if Distance>caliper (i.e. if they exceed a certain distance)

2. Estimation: calculate difference in means or run a regression
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Other Distance Matching Methods

k-Nearest-neighbour Matching (NNM)

▶ Match with the nearest neighbour or the k nearest neighbours in terms of X
▶ Take the average of these neighbours as the counterfactual

Radius and Kernel Matching

▶ Match with all control units within a certain radius of the treated unit
▶ If all control units have equal weight, we call this radius matching
▶ If weights decay with distance, we call this kernel matching
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Nearest Neighbour Matching with k = 3
Suppose you have a dataset with 2 treated and many control units
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Nearest Neighbour Matching with k = 3
Now we select the three nearest neighbours for each treated unit; their average Y is the
counterfactual for the treated unit

T

TC

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

2

4

6

8

2 4 6 8 10
Education

A
ge

17 / 69



Nearest Neighbour Matching with k = 10
Now we select the ten nearest neighbours for each treated unit
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Radius Matching
Here the researcher specifies a radius (r = 2) around the treated unit
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Radius Matching
Each control unit within the radius has equal weight
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Radius Matching: Larger Radius (r = 4)
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Kernel Matching
Consider the following sample

T

C

C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

CC

C

4

6

8

10

2 4 6 8 10
Education

A
ge

22 / 69



Kernel Matching
Now suppose each control unit gets equal weight
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Kernel Matching
Now let’s use an Epanechnikov Kernel: further away ⇒ smaller weight
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Kernel Matching

We want to create a weighted average by applying a
kernel function

Ȳ =

n∑
i=1

wiYi

n∑
i=1

wi

=

n∑
i=1

K (Xi)Yi

n∑
i=1

K (Xi)

There are many Kernel functions; they are typically
concave and assign the highest weight to the smallest
distance.

Example: Epanechnikov kernel

K (X ) = 3
4(1 − X 2)

K(X) is only defined between
−1 and 1
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Kernel Matching Within a Radius
We often use kernel weighting within a radius or the set of k nearest neighbours
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More vs Better: the Bias-Variance Tradeoff

We often need to decide between unique matches and multiple control units

Researchers need to solve a bias-variance trade-off

Unique matches:

▶ Matches are precise but few → low bias, high variance

Weighted average of multiple control units

▶ Find many matches, but these are imprecise → high bias, low variance
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Coarsened Exact Matching

Idea of CEM:

▶ Coarsen X (for example different age groups)
▶ Perform exact matching based on coarsened data

Advantage: easy and fast

Disadvantages:

▶ researcher degrees of freedom (categories are chosen by the researcher)
▶ curse of dimensionality (few categories: many but imprecise matches; many

categories: few but more precise matches)
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Coarsened Exact Matching
Starting point: same as before
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Coarsened exact matching
Coarsen: divide variables into categories
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Coarsened exact matching
Now see which cells contain treated and control units
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Coarsened exact matching
We find matches within cells
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Coarsened exact matching

We find matches within cells

We need to take a stand regarding matching within the cells

▶ nearest neighbour or k nearest neighbours
▶ with or without replacement
▶ kernel distance function (usually not necessary)
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Propensity Score Matching

Idea: predict the probability that a given unit is treated based on X

▶ The probability Pr(Di = 1|X ) is called the propensity score

Match units with a similar probability of being treated (propensity score)

Estimate the ATT based on the matched dataset
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Propensity score matching
Starting point: treated and control units
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Propensity score matching
For each unit, we want to predict the probability that it is treated based on X
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Propensity score matching
Let’s do this: predict the probability of being treated
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Propensity score matching
For each treated unit, find the control unit with the closest propensity score
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Propensity score matching
Prune control units that have not been matched
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Propensity score matching
The result is your matched dataset
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Propensity score matching
The result is your matched dataset
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Propensity score matching
We can now regress the outcome on the treatment status
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Estimation of the propensity score

The propensity score must satisfy the balancing property. It implies:

▶ Observations with the same propensity score have the same distribution of
observable covariates independently of treatment status;

▶ For a given propensity score assignment to treatment is random, hence treated
and control units are on average observationally identical.
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Estimation of the propensity score

Can use any standard probability model to estimate the propensity score, e.g. a logit
model:

Pr{Di = 1|Xi} = eλh(Xi )

1 + eλh(Xi )
,

where h(Xi) is a function of covariates with linear and higher order terms.
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Inverse Probability Weighting (IPW)

IPW is based on the propensity score. Ingredients:

▶ The propensity score of being treated: p(X )
▶ The propensity score of beign untreated: 1 − p(X )

Units are weighted by the inverse propensity score of THEIR treatment status

Why does this work?

▶ Weights “create” similar observations in terms of X
▶ Treated observations with similar X as untreated get a high weight because they

are similar
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Inverse Probability Weighting and the ATE

It can be shown that IPW identifies the ATE in the population:

∆ = E [µ1(X ) − µ0(X )] = E
[E [Y · D | X ] · D

p(X ) − E [Y · (1 − D) | X ] · (1 − D)
1 − p(X )

]
= E

[Y · D
p(X ) − Y · (1 − D)

1 − p(X )

]
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Inverse Probability Weighting and the ATT

The ATT is identified by

∆D=1 = E
[ Y · D

Pr(D = 1) − Y · (1 − D) · p(X )
(1 − p(X )) · Pr(D = 1)

]
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IPW Weights Example

Observation Treated PS (p(x)) weight

1 1 0.6 1
p(x) = 1

0.6 = 1.67
2 0 0.6 1

1−p(x) = 1
0.4 = 2.5

3 1 0.9 1
p(x) = 1

0.9 = 1.11
4 0 0.9 1

1−p(x) = 1
0.1 = 10

Here, observations 2 and 4 (untreated) get fairly large weights because they have
similar X to typical treated units

Observation 3 (treated) gets a low weight because it is dissimilar to most untreated
units
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Matching and Causal Inference

Matching is NOT a causal identification strategy

▶ Neither is regression
▶ It is a data reduction/pre-processing technique

It helps us to achieve balance on observables X

Causal identification rests on the conditional independence assumption

▶ given X , D should be as good as randomly assigned
▶ i.e. X has to capture all confounders
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Matching and Causal Inference: a DAG

If this is the correct DAG, our matching needs to account for A, B and C
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PSM and Causal Inference

With PSM, the additional assumption is that the propensity score is correctly
specified and closes all backdoor paths
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Matching Example: Broockman (2013)

Research question: are black politicians more likely to help black citizens even if the
incentives are low?

Methodology: audit study; sent emails to U.S. state legislators; asking them to help
them sign up for unemployment benefits

Experimental variation:

▶ Sender with black vs. white name
▶ Sender lives in same district as legislator or far away

Matching: white and black legislators with similar characteristics
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Step 1: Check for Common Support

Left: share of black voters in the district

Right: distribution of propensity scores

▶ propensity score p (probability of being black) based on share of black voters,
median household income, legislator is a democrat
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Step 1: Common Support
Problem: areas with high p have no white legislators, areas with low p have no black legislators

▶ Solution: prune areas without common support (at least 10 control obs within a .02
bin)
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Balance in Broockman (2013)
Broockman performs Mahalanobis (nearest neighbour) matching; here is the balancing
table

Before Matching After Matching

Median Household Income
Mean Treatment 3.33 3.333
Mean Control 4.435 3.316
Std. Mean Diff -97.057 1.455
t-test p-value <.0001 0.164

Black Percent
Mean Treatment 0.517 0.515
Mean Control 0.063 0.513
Std. Mean Diff 224.74 1.288
t-test p-value <.0001 0.034

Legislator is a Democrat
Mean Treatment 0.978 0.978
Mean Control 0.501 0.978
Std. Mean Diff 325.14 0
t-test p-value <.0001 1 55 / 69



Careful when Performing Balancing Tests

Focusing just on mean differences can be deceptive. Consider these two distributions:

Always check the full distribution of covariates before and after matching
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Full Distribution of X and p after IPW

Not perfect, but not so bad either. . .
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Data preparation in R
We use the excellent Matching package in R. A great alternative is MatchIt

library(Matching)
library(causaldata)
library(tidyverse)

br <- causaldata::black_politicians

# Outcome
Y <- br %>%

pull(responded)
# Treatment
D <- br %>%

pull(leg_black)
# Matching variables
# Note select() is also in the Matching package, so we specify dplyr
X <- br %>%

dplyr::select(medianhhincom, blackpercent, leg_democrat) %>%
as.matrix() 58 / 69



Mahalanobis distance matching in R
# Set weight=2 for Mahalanobis distance
M <- Match(Y, D, X, Weight = 2, caliper = 1)

# See treatment effect estimate
summary(M)

##
## Estimate... -0.0073462
## AI SE...... 0.072683
## T-stat..... -0.10107
## p.val...... 0.91949
##
## Original number of observations.............. 5593
## Original number of treated obs............... 364
## Matched number of observations............... 363
## Matched number of observations (unweighted). 405
##
## Caliper (SDs)........................................ 1 1 1
## Number of obs dropped by ’exact’ or ’caliper’ 1

59 / 69



Mahalanobis distance matching in R

Previous slide: the estimate −0.007346 means that black legislators were 0.7
percentage points less likely to respond to emails

This effect is not statistically significant
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Comparison with OLS
Table 2

Dependent variable:
responded

(1) (2)
leg_black −0.032 −0.035

(0.027) (0.039)

medianhhincom 0.014∗∗∗

(0.005)

blackpercent 0.081
(0.063)

leg_democrat −0.039∗∗∗

(0.014)

Constant 0.425∗∗∗ 0.377∗∗∗

(0.007) (0.025)

Observations 5,593 5,593
R2 0.0003 0.003
Adjusted R2 0.0001 0.003
Residual Std. Error 0.494 (df = 5591) 0.493 (df = 5588)
F Statistic 1.435 (df = 1; 5591) 4.906∗∗∗ (df = 4; 5588)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Comparison with OLS

The covariate plots showed that there is little common support

Matching rests on comparable observations with common support in X

OLS uses observations without common support; this explains the difference in the
estimates
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Matching and Re-Weighting: Conclusion

Matching and re-weighting are data subsetting techniques

▶ They help to achieve balance on observables X
▶ They are particularly useful when there is little common support

Matching and re-weighting are not causal identification strategies

▶ we need to rely on the conditional independence assumption to identify causal
effects

▶ whether this holds depends on the context
▶ even the best matching procedure in the world cannot fix a bad research design
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Matching and Re-Weighting: Conclusion

There are many matching procedures

▶ It is easy to get lost in the details
▶ The most important thing is to achieve balance on observables X
▶ When choosing a method, keep the bias-variance tradeoff in mind

Showing robustness to different matching procedures is very important
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Matching in R

R has many packages for matching; most of them do similar things but have their
strengths and weaknesses. Here are some very good ones:

▶ Matching
▶ MatchIt
▶ cem for Coarsened Exact Matching
▶ optmatch

MatchIt covers all the bases
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APPENDIX
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Contact

Prof. Benjamin Elsner
University College Dublin
School of Economics
Newman Building, Office G206
benjamin.elsner@ucd.ie

Office hours: book on Calendly
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